Tracking survey: Can we use Olympus for sPHENIX case?

Carlos Perez

Prolog

- During our quest for finding an optimal pattern recognition algorithm, the Olympus software was suggested to us.
- We contacted Jan Bernauer (main developer of Olympus pattern recognition software).
- We had a long and fruitful discussion with Jan last Thursday during TPC meeting where he presented a detailed explanation of the tracking problem they have and how their software attacks it.
- Here I report what the code does and sketch few ideas of how we can use it.

OLYMPUS detector

OLYMPUS detector

Pattern Recognition in Olympus

Pattern Recognition in Olympus

Very modular code available

Features

- Templated library, adjustable for any reasonable bit length
- Test if pattern is found
- List all found patterns
- Detector efficency: can specify number of missed bits
- Available at https://github.com/JanCBernauer/patternmatch

How to use

- Split up detector in cells
 - "natural" units like paddels/strips/drift cells
 - arbitrary groups/ranges
- Find all possible patterns (MC, brain, etc.)
- Build database with library
- Profit

Tracking Strategy in a nutshell (standard/old approach for Olympus)

Improved versions of this flowchart are being build for olympus that allows for a faster propagation, less combinatorics and better fitting (splines).

Testing Olympus in sPHENIX...

- After discussion in the TPC group, we decided to test a very minimal implementation of Olympus for our tracking case.
 - e.g. three templates in a standalone run
- Goal is to explore scalability and performance.
- Will report after first tests are completed.